Comparison of Langevin and Markov channel noise models for neuronal signal generation.

نویسندگان

  • B Sengupta
  • S B Laughlin
  • J E Niven
چکیده

The stochastic opening and closing of voltage-gated ion channels produce noise in neurons. The effect of this noise on the neuronal performance has been modeled using either an approximate or Langevin model based on stochastic differential equations or an exact model based on a Markov process model of channel gating. Yet whether the Langevin model accurately reproduces the channel noise produced by the Markov model remains unclear. Here we present a comparison between Langevin and Markov models of channel noise in neurons using single compartment Hodgkin-Huxley models containing either Na+ and K+, or only K+ voltage-gated ion channels. The performance of the Langevin and Markov models was quantified over a range of stimulus statistics, membrane areas, and channel numbers. We find that in comparison to the Markov model, the Langevin model underestimates the noise contributed by voltage-gated ion channels, overestimating information rates for both spiking and nonspiking membranes. Even with increasing numbers of channels, the difference between the two models persists. This suggests that the Langevin model may not be suitable for accurately simulating channel noise in neurons, even in simulations with large numbers of ion channels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate and Fast Simulation of Channel Noise in Conductance-Based Model Neurons by Diffusion Approximation

Stochastic channel gating is the major source of intrinsic neuronal noise whose functional consequences at the microcircuit- and network-levels have been only partly explored. A systematic study of this channel noise in large ensembles of biophysically detailed model neurons calls for the availability of fast numerical methods. In fact, exact techniques employ the microscopic simulation of the ...

متن کامل

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

Stochastic modeling of excitable dynamics: improved Langevin model for mesoscopic channel noise

Influence of mesoscopic channel noise on excitable dynamics of living cells became a hot subject within the last decade, and the traditional biophysical models of neuronal dynamics such as Hodgkin-Huxley model have been generalized to incorporate such effects. There still exists but a controversy on how to do it in a proper and computationally efficient way. Here we introduce an improved Langev...

متن کامل

Channel based generating function approach to the stochastic Hodgkin-Huxley neuronal system

Internal and external fluctuations, such as channel noise and synaptic noise, contribute to the generation of spontaneous action potentials in neurons. Many different Langevin approaches have been proposed to speed up the computation but with waning accuracy especially at small channel numbers. We apply a generating function approach to the master equation for the ion channel dynamics and furth...

متن کامل

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 81 1 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2010